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Chapitre 5 : Torsion simple

Introduction

La torsion ne cause pas de tension ou compression dans le matériau: elle génere
des contraintes de cisaillement pures sur chague plan de section transversal.

Le résultat de la contrainte de cisaillement en torsion sur n’'importe quel plan de
section transversale est un couple interne.

Les contraintes de cisaillement, z, sont proportionnelles aux déformations relatives, ,
avec une constante de proportionnalite, G, le module de cisaillement

pente . G

7 contrainte de cisaillement

v

y . déformation relative
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Introduction

Une section plane perpendiculaire a I'axe de torsion reste plane suite a 'application
du couple (pas de distorsion)

Sur une section transversale, toutes les lignes radiales effectuent une rotation avec
un angle égal lors de la déformation

La déformation relative de cisaillement y(r) et la contrainte de cisaillement () varient
linéairement, de 0 a r = 0, de 0 a 7z, , respectivement, sur le bord extérieur de la
section

max

|}




Chapitre 5 : Torsion simple
Introduction

Les sections planaires restent planaires en torsion seulement pour les corps avec
une symetrie axiale infinie(comme les barres circulaires et les tubes).

Dans une barre avec une section carré / rectangulaire, il n'y a pas de telle symétrie et
les sections transversales vont se déformer.

Il est faux d’assumer que la contrainte de cisaillement dans une barre rectangulaire
varie linéairement avec la distance, la contrainte est en fait zéro dans les coins et non
maximum.
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Démarche et applications

Tensile Failure =hear Failure

in Torsion in Torsion
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Contrainte de cisaillement en torsion simple

La section normale F d’'un solide travaille a la forsion simple quand le torseur des
efforts intérieurs se réduit au moment de forsion M, perpendiculaire a F .

Le calcul des contraintes et des déformations n’est facile que si la section est dites
circulaire.

Pour des barres circulaires en torsion, I'expérience montre que I'on peut admettre
qu’une section F’ apres déformation se deduit de la section originelle F' par simple
rotation dans le sens du moment de torsion M, (hypothese de Bernoulli)

aD
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Contrainte de cisaillement en torsion simple

En torsion, les équations d’équilibre sont toutes nulles, sauf la quatrieme

(@ N=[[, odF (d) M= [f, 1,y— 1yzdF

) Ty=[f, 7, dF =0 (€) Msy, = [, 0zdF =0

) T,= ffp T, dF =0 (f) MfZ=_ffF cydF =0
AZ

Comme la section F’ reste dans le plan de F, la
contrainte normale o est nécessairement nulle en
tout point, de sorte que les équations (a), (e) et
(f) sont satisfaites

#(R)

Un point M de F se déplace sur le cercle de
rayon r» passant par ce point; la contrainte
tangentielle = doit donc étre proportionnelle a r et
perpendiculaire a GM

e 1=k
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Contrainte de cisaillement en torsion simple

L'introduction des coordonnées polaires (r, ) permet d’ecrire
« y=rcosf = T, = —T sinf = —k r sinf
« z=rsinf - T, =T cos8 =kr cos@

de sorte que les équations (b) et (c) ont pour expression, compte tenu de dF=r dr d&
+ T,=—k[[, rsin0dF = -k fOer drfoznsianH =0

« T,=kf[, r cosOdF =k fOerdrfozncosé?dH =0

Elles sont identiguement nulles quelle que soit la valeur &, la distribution des ¢
satisfaisant donc les conditions 7, =0 et 7, = 0.

La relation (d) va nous permettre de calculer la constante &, puisqu’en y insérant les
composantes z, et z, et en utilisant les coordonnées polaires

« My =k[f, r*(cos?6 +sin®6)dF =k [[, r?dF = kI,
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Contrainte de cisaillement en torsion simple

L'integrale constitue le /moment d’inertie polaire I, de la section

o L= [, r2dF

Ce qui permet de définir la constante £ comme étant

Ce qui permet d’explicité la contrainte zr sous la forme

rM
- T=kr=—"t
Iy

L'état de contrainte de la torsion circulaire est donc un cisaillernent pur, mais la
contrainte tangentielle z varie en intensité et direction. Sa valeur maximale apparait
sur la surface exterieure du barreau

RM
Tmax = 7(R) = Tt

10
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Déformation en torsion circulaire

Considérons un carré ABCD compris entre deux sections voisines F, et F,, distantes
de dx. La section F, étant supposée fixe, le carre se transforme en un losange
AB'C'D, conformément aux résultats trouvés pour le cisaillement simple

11
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Déformation en torsion circulaire
Nommons dg la rotation de F, par rapport a F, et y |'angle de glissement.

|’aréte BB’ a pour valeur

- BB'=ydx=rde

Ou ¢ dénote la déformation angulaire, de sorte I'on peut écrire
d(p _Y_ T M

r GIp
J L
S| Ie moment de torsmn est constant sur une longueur ¢, une génératrice AB du cy-

lindre se transforme en une hélice AB' et lintégration de la relation donne la
deformation angulaire totale ou angle de torsion

Ml
G I,
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Déformation en torsion circulaire

Si le moment de torsion est constant sur une longueur ¢, une genératrice AB du cy-

lindre se transforme en une hélice AB' et lintégration de la relation donne la
déeformation angulaire totale ou angle de torsion

MV

G I

13
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Déformation en torsion non circulaire

Alors que les sections des pieces circulaires soumises a la torsion restent planes,
cette situation n'est plus vraie quand la section n’'et pas circulaire.

Nous ne ferons pas de démonstrations rigoureuses dans le cadre de ce cours, mais
nous contenterons de presenter quelques résultats intéeressants qui decoule de
méthodes plus genérales de la théorie de I'élasticite.

Section elliptique

(a) A
A
. _ 16M;
max - p(gB2)
[ Tmax!
T
Yy
H — G >
__de _ 16M¢(H?*+B?)
¢ 6 _ _ 3 I Tmax!|
dx G (HB)
Y
B
e |
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Déformation en torsion non circulaire

Alors que les sections des pieces circulaires soumises a la torsion restent planes,
cette situation n'est plus vraie quand la section n’'et pas circulaire.

Nous ne ferons pas de démonstrations rigoureuses dans le cadre de ce cours, mais
nous contenterons de presenter quelques résultats intéeressants qui decoule de
méthodes plus genérales de la théorie de I'élasticite.

Section triangulaire

(b) z
. 20 M,
max — B3 R T
. g=de_10M g S
dx 6GI | Tmax! S GINC
p -

7 .
[ | Trax!

B
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Déformation en torsion non circulaire

AZ

Tmax

ou G dénote a nouveau le module de glissement et ou a et g constituent des
coefficients qui sont fonctions du rapport H/B

Rapport H/B 1 1,5 2 3 4 6 10 ©
Facteur « 0,208 0,231 0,246 0,267 0,282 0,299 0,313 0,333
Facteur g 0,141 0,196 0,229 0,263 0,281 0,299 0,313 0,333

16



Chapitre 5 : Torsion simple
Probleme 5.1

En choisissant une contrainte de cisaillement admissible z4,, de 50 MPa, calculer le
diametre — supposé uniforme — d’un arbre de turbine a gaz transmettant une
puissance de 25 MW a 8000 t/min

17
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Analyse de I'état de contrainte en torsion circulaire

Afin de déterminer I'état de contrainte en torsion circulaire, considéerons un élement
infinitésimal autour d’un point M,, situé a une distance r de I'axe Gx.

Les contraintes normales sont nulles sur toutes les faces (o, = g, = o, = 0) et la

contrainte tangentielle est nulle sur les faces perpendiculaires a I'axe radial Mr

Des lors qu'une des contraintes principales est nulle, I'état de contrainte est
bidimensionnel

YA

A
,,._\—% r G| —
N

M|
axe ! L axe
radial Tl ~ tangentiel
t
TA/ = \

23
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Analyse de I'état de contrainte en torsion circulaire

Choisissons a nouveau une section oblique F,, perpendiculaire au plan principal
M xt et tournant autour de I'axe M, sa normale n formant un angle ¢ avec I'axe Mx

L’équilibre des forces selon la normale n et la direction perpendiculaire entraine
© Fy 0p,—Etsing —Ftcosp =0

© Fy tpy—Ftcosp + Fitsing =0

24
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Analyse de I'état de contrainte en torsion circulaire

En vertu de la definition des faces F, = F, cos ¢ et F, = F, sin ¢, les relations
précédentes deviennent (le déphasage ¢, valant z/4)

+ 0, =27 singcos@ =1 sin2¢ =T cos 2(p — @o)

. qu = T(COSZQD — Sinzgo) =T COS Zgo = —T Sin 2(§0 — QDO)

'S

Cercle de Mohr fondamental
I, en torsion circulaire

25



Chapitre 5 : Torsion simple

Analyse de I'état de contrainte en torsion circulaire
Torsion circulaire : (a) cercles de Mohr; (b) axes et plans principaux

26
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Ligne isostatique

A ce stade, il est intéressant d’observer les trajectoires des contraintes principales,
c’est-a-dire les courbes de l'espace continuellement tangentes aux contraintes

principales. Ces courbes, appelées lignes isostatiques, sont des hélices a 45° en
torsion circulaire

28
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Simulation

Module élastique du féemur : 10-20 Gpa (o,
Moment de force : 1000 Nm = 100kga 1 m

Résistance de I'os : 100 N/mm? ou 100 MPa

Rayon: R =20 mmetr = 10 mm

5, Mises

(Awg: 75%)
+1.531e+08
+1.464e+08
+1.397e4+08
+1.32%9e4+08
+1.262e+08
+1.195e+4+08
+1.127e4+08
+1.060e4+08
+9.927e4+07
+9.254e+07
+5.581e+07
+7.908e4+07
+7.235e+07

=50-100 MPa)
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+7.709e+07

++++++++++

RM; _ 2RM;

= 84.8 MPa

I m(R*—1%)




Chapitre 5 : Torsion simple
Variation de volume

'état de contrainte étant bidimensionnel, la variation relative de volume au premier
ordre peut étre obtenue grace a la formule dans laquelle o, et o, sont les contraintes
principales non nulles oy = +7 et oy = -7

_O'1+O'3 . _E . _
v=——01A=-21)=—00-21)=0
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Densité d’énergie

La densiteé d’énergie u de déformation specifigue d'un barreau soumis au
cisaillement pour la torsion a pour valeur (voir énergie de cisaillement ch. 4)

2
_ T’ _ T T‘%nax_ r 2 T=kr=r—Mt
c U=—= = \%z/) Umax b

2G R
Tmax = T(R) =

R M,

p

L’ énergie de déformation dU comprise entre deux sections distantes de dx est égale
au demi-produit du moment de torsion M, par la rotation de d’'une des sections par
rapport a l'autre

T A u
U max U max

: _1 _ M
dU—thdgo—ZGlpdx
L i _ M, dx _
Y75,
-R LR
Y A A F: _ MEY
U—fo dU—fO ZGIpdx_ﬂ — Tmax
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Probleme 5.2

Calculer la contrainte de cisaillement maximum dans un ressort hélicoidal de dia-
metre D, formé de n spires de diametre d et soumis a une charge de compression P.
Déterminer ensuite la fleche, la constante du ressort et I'énergie emmagasinée.

32
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Probleme 5.2
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Annexe lll Moment d’une aire plane
Moment du second ordre

Les moments du second ordre d’une aire plane F du plan Oxy, constitués du
moment d'inertie polaire par rapport a I'origine O, des moments d’inertie par rapport
aux axes Ox et Oy, ainsi que du moment centrifuge, sont définis par les expressions
respectives

« I, = [[,r?dF 'm?*]
L= [[y*dF [m?]
-« I, = [[ . x*dF m*
o« Ly = J[xydF m*

ou r dénote le module du vecteur-lieu r

Il est a relever qu’en vertu de la liaison géomeétrique r? = x> + y?, le moment d’inertie
polaire 1, est lié aux moments d'inertie 7, et I, par larelation : I, = [ + I,




Annexe lll Moment d’une aire plane

Moment du second ordre : surface rectangulaire
Le calcul par intégration du moment du second ordre d’un rectangle par rapport a

'axe x passant par le centre de gravité

B/2 H/2
R (I A AL

y=—H/2
Yy
|B/z 1 3|H/2 _ BH® }
B/Z H/2 = 12 A
. = [f, y2dF = fB/Z M y2dr = BH? i G o
y _B/2)y=0Y 3
Approche discréte Y -
B
3 2 3 e —
¢ Ly=lL+%y?F=""-+=""BH ="




Annexe lll Moment d’une aire plane
Moment du second ordre

(@

Forme de l'aire I, I, I, I,
m* m* m* m
, Ayt 4 4 4
(a) Carré de coté D b~ b~ b- 0
6 12 12
BH BH?3 HB3
(b) Rectangle de largeur B et hauteur H — (B> +h?) — — 0
12 12 12
BH (352 + 412) BH? HB?
(c) Triangle isocele de base B et hauteur H 144 36 48 0
. N 3 3
(d) Losange de diametres B et H ﬁ(gz +h?) BH” HB” 0
48 48 48
4 4 4
(e) Cercle de diametre D mh~ mb” mDh” 0
32 64 64
nBH nBH3 nHB3
. , 2 2
() Ellipse d’axes B et H o (B*+h°) n oA 0
(b) y ©
vy A () YA ©) ® N
y YA
G X H G X H G /G\ G
> > X
X H > \-/ ;x H
D
- > B B - b >
- > - > B B

A

A
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Annexe lll Moment d’une aire plane
Effet de translation des axes de coordonnées

Y
. . A
En considérant la translation dF
YA X
° I" =r+ Fo) r
Y
- x'=x+a "\ o -
o yl — y 4+ b /
b 0
Par rapport au référentiel Ox"y’, les Y o
moments du second ordre ont pour 0 >
. a
expression -

Iy = [[.7"%dF = [[ |(x + @)* + (y + b)?|dF =1, + 2(aS, + bS)) + 6%F

Dans le cas particulier ou le point O coincide avec le centre de gravité G

L, = L, + 82F
I, =L, + b2F
I, =1, +a*F




Annexe lll Moment d’une aire plane
Moment du second ordre : poutre en I

Forme intégrale du moment statique et du moment d’inertie

B/2 B/2 ((H-h)/2+h
© Sw = fx =—B/2f de Zf fH h)/2 y dF

2 _
_ BH? _ Hh(B-D) ]
2 2

_ (B/2 H/2 B/2 h/2
© I = fx=—B/2 fy=—H/2 y* dF — Zf I /2y

_ BH® h(B-b) (]

12 12

¢ Ixr=1x+zy2F [m4]

= bt M




Annexe lll Moment d’une aire plane
Moment du second ordre : poutre en I

Calcul discret des moments statique et d’inertie (sommation des aires)
- S,=YyF =§BH—§h(B —b)

__ BH? Hh(B-b)

=Er ]

2 2

e 12 12
yA
¢ Ixr=1x+zy2F [m4]
H h G ¥
B3H  h(B3*-b3) b
° Iy - —
12 12 ,
> X
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