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La torsion ne cause pas de tension ou compression dans le matériau: elle génère
des contraintes de cisaillement pures sur chaque plan de section transversal.

Le résultat de la contrainte de cisaillement en torsion sur n’importe quel plan de
section transversale est un couple interne.

Les contraintes de cisaillement, τ, sont proportionnelles aux déformations relatives, γ,
avec une constante de proportionnalité, G, le module de cisaillement
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Une section plane perpendiculaire à l’axe de torsion reste plane suite à l’application
du couple (pas de distorsion)

Sur une section transversale, toutes les lignes radiales effectuent une rotation avec
un angle égal lors de la déformation

La déformation relative de cisaillement γ (r) et la contrainte de cisaillement τ (r) varient
linéairement, de 0 à r = 0, de 0 à τmax , respectivement, sur le bord extérieur de la
section

Introduction

τ max
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Les sections planaires restent planaires en torsion seulement pour les corps avec
une symétrie axiale infinie(comme les barres circulaires et les tubes).

Dans une barre avec une section carré / rectangulaire, il n’y a pas de telle symétrie et
les sections transversales vont se déformer.

Il est faux d’assumer que la contrainte de cisaillement dans une barre rectangulaire
varie linéairement avec la distance, la contrainte est en fait zéro dans les coins et non
maximum.

Introduction
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Démarche et applications

(B) Identification des 
efforts non-nuls

(A) Introduction des 
notions générales et 
des hypothèses
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La section normale F d’un solide travaille à la torsion simple quand le torseur des
efforts intérieurs se réduit au moment de torsion Mt perpendiculaire à F .

Le calcul des contraintes et des déformations n’est facile que si la section est dites
circulaire.

Pour des barres circulaires en torsion, l’expérience montre que l’on peut admettre
qu’une section F' après déformation se déduit de la section originelle F par simple
rotation dans le sens du moment de torsion Mt (hypothèse de Bernoulli)

Contrainte de cisaillement en torsion simple
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En torsion, les équations d’équilibre sont toutes nulles, sauf la quatrième

Contrainte de cisaillement en torsion simple

(a) 𝑁𝑁 = ∬𝐹𝐹 𝜎𝜎 d𝐹𝐹

(b) 𝑇𝑇𝑦𝑦 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 d𝐹𝐹 = 0

(c) 𝑇𝑇𝑧𝑧 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 d𝐹𝐹 = 0

(d) 𝑀𝑀𝑡𝑡 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 𝑦𝑦 − 𝜏𝜏𝑦𝑦 𝑧𝑧 d𝐹𝐹

(e) 𝑀𝑀𝑓𝑓𝑓𝑓 = ∬𝐹𝐹 𝜎𝜎 𝑧𝑧 d𝐹𝐹 = 0

(f) 𝑀𝑀𝑓𝑓𝑧𝑧 = −∬𝐹𝐹 𝜎𝜎 𝑦𝑦 d𝐹𝐹 = 0

Comme la section F' reste dans le plan de F, la
contrainte normale σ est nécessairement nulle en
tout point, de sorte que les équations (a), (e) et
(f) sont satisfaites

Un point M de F se déplace sur le cercle de
rayon r passant par ce point; la contrainte
tangentielle τ doit donc être proportionnelle à r et
perpendiculaire à GM

• 𝜏𝜏 = 𝑘𝑘 𝑟𝑟
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L’introduction des coordonnées polaires (r, θ ) permet d’écrire

• 𝑦𝑦 = 𝑟𝑟 cos𝜃𝜃  𝜏𝜏𝑦𝑦 = −𝜏𝜏 sin𝜃𝜃 = −𝑘𝑘 𝑟𝑟 sin𝜃𝜃

• 𝑧𝑧 = 𝑟𝑟 sin𝜃𝜃  𝜏𝜏𝑧𝑧 = 𝜏𝜏 cos 𝜃𝜃 = 𝑘𝑘 𝑟𝑟 cos𝜃𝜃

de sorte que les équations (b) et (c) ont pour expression, compte tenu de dF=r dr dθ

• 𝑇𝑇𝑦𝑦 = −𝑘𝑘∬𝐹𝐹 𝑟𝑟 sin𝜃𝜃 d𝐹𝐹 = −𝑘𝑘 ∫0
𝑅𝑅 𝑟𝑟2 𝑑𝑑𝑟𝑟 ∫0

2𝜋𝜋 sin𝜃𝜃 𝑑𝑑𝜃𝜃 = 0

• 𝑇𝑇𝑧𝑧 = 𝑘𝑘∬𝐹𝐹 𝑟𝑟 cos 𝜃𝜃 d𝐹𝐹 = 𝑘𝑘 ∫0
𝑅𝑅 𝑟𝑟2 𝑑𝑑𝑟𝑟 ∫0

2𝜋𝜋 cos𝜃𝜃 𝑑𝑑𝜃𝜃 = 0

Elles sont identiquement nulles quelle que soit la valeur k, la distribution des τ
satisfaisant donc les conditions Ty = 0 et Tz = 0.

La relation (d) va nous permettre de calculer la constante k, puisqu’en y insérant les
composantes τy et τz et en utilisant les coordonnées polaires

• 𝑀𝑀𝑡𝑡 = 𝑘𝑘∬𝐹𝐹 𝑟𝑟2 cos2 𝜃𝜃 + sin2 𝜃𝜃 d𝐹𝐹 = 𝑘𝑘∬𝐹𝐹 𝑟𝑟2d𝐹𝐹 = 𝑘𝑘 𝐼𝐼𝑝𝑝

Contrainte de cisaillement en torsion simple
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L’intégrale constitue le moment d’inertie polaire Ip de la section

• 𝐼𝐼𝑝𝑝 = ∬𝐹𝐹 𝑟𝑟2d𝐹𝐹

Ce qui permet de définir la constante k comme étant

• 𝑘𝑘 = 𝑀𝑀𝑡𝑡
𝐼𝐼𝑝𝑝

Ce qui permet d’explicité la contrainte τ sous la forme

• 𝜏𝜏 = 𝑘𝑘 𝑟𝑟 = 𝑟𝑟 𝑀𝑀𝑡𝑡
𝐼𝐼𝑝𝑝

L’état de contrainte de la torsion circulaire est donc un cisaillement pur, mais la
contrainte tangentielle τ varie en intensité et direction. Sa valeur maximale apparaît
sur la surface extérieure du barreau

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜏𝜏 𝑅𝑅 = 𝑅𝑅 𝑀𝑀𝑡𝑡
𝐼𝐼𝑝𝑝

Contrainte de cisaillement en torsion simple
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Considérons un carré ABCD compris entre deux sections voisines F1 et F2, distantes
de dx. La section F1 étant supposée fixe, le carré se transforme en un losange
AB'C'D, conformément aux résultats trouvés pour le cisaillement simple

Déformation en torsion circulaire
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Nommons dϕ la rotation de F2 par rapport à F1 et γ l’angle de glissement.

L’arête BB' a pour valeur

• 𝐵𝐵𝐵𝐵′ = 𝛾𝛾 𝑑𝑑𝑥𝑥 = 𝑟𝑟 𝑑𝑑𝜑𝜑

Où ϕ dénote la déformation angulaire, de sorte l’on peut écrire

• 𝑑𝑑𝜑𝜑
𝑑𝑑𝑥𝑥

= 𝛾𝛾
𝑟𝑟

= 𝜏𝜏
𝑟𝑟 𝐺𝐺

= 𝑀𝑀𝑡𝑡
𝐺𝐺 𝐼𝐼𝑝𝑝

Si le moment de torsion est constant sur une longueur , une génératrice AB du cy-
lindre se transforme en une hélice AB' et l’intégration de la relation donne la
déformation angulaire totale ou angle de torsion

• 𝜑𝜑 = 𝑀𝑀𝑡𝑡 

𝐺𝐺 𝐼𝐼𝑝𝑝

Déformation en torsion circulaire

𝛾𝛾 =
𝜏𝜏
𝐺𝐺 𝜏𝜏 =

𝑟𝑟 𝑀𝑀𝑡𝑡

𝐼𝐼𝑝𝑝
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Déformation en torsion circulaire

Si le moment de torsion est constant sur une longueur , une génératrice AB du cy-
lindre se transforme en une hélice AB' et l’intégration de la relation donne la
déformation angulaire totale ou angle de torsion

• 𝜑𝜑 = 𝑀𝑀𝑡𝑡 

𝐺𝐺 𝐼𝐼𝑝𝑝
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Alors que les sections des pièces circulaires soumises à la torsion restent planes,
cette situation n’est plus vraie quand la section n’et pas circulaire.

Nous ne ferons pas de démonstrations rigoureuses dans le cadre de ce cours, mais
nous contenterons de présenter quelques résultats intéressants qui découle de
méthodes plus générales de la théorie de l’élasticité.

Section elliptique

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 16𝑀𝑀𝑡𝑡
𝜋𝜋 𝐻𝐻𝐵𝐵2

• 𝜃𝜃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 16𝑀𝑀𝑡𝑡 𝐻𝐻2+𝐵𝐵2

𝜋𝜋 𝐺𝐺 𝐻𝐻𝐻𝐻 3

Déformation en torsion non circulaire
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Alors que les sections des pièces circulaires soumises à la torsion restent planes,
cette situation n’est plus vraie quand la section n’et pas circulaire.

Nous ne ferons pas de démonstrations rigoureuses dans le cadre de ce cours, mais
nous contenterons de présenter quelques résultats intéressants qui découle de
méthodes plus générales de la théorie de l’élasticité.

Section triangulaire

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝑀𝑀𝑡𝑡
𝐵𝐵3

• 𝜃𝜃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 10 𝑀𝑀𝑡𝑡
6 𝐺𝐺 𝐼𝐼𝑝𝑝

Déformation en torsion non circulaire
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Section rectangulaire

• 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑡𝑡
𝛼𝛼 𝐻𝐻𝐵𝐵2

• 𝜃𝜃 = 𝑑𝑑𝜑𝜑
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑡𝑡
𝛽𝛽 𝐺𝐺 𝐻𝐻𝐵𝐵3

où G dénote à nouveau le module de glissement et où α et β constituent des
coefficients qui sont fonctions du rapport H/B

Déformation en torsion non circulaire

Rapport H/B 1 1,5 2 3 4 6 10 ∞

Facteur α 0,208 0,231 0,246 0,267 0,282 0,299 0,313 0,333

Facteur β 0,141 0,196 0,229 0,263 0,281 0,299 0,313 0,333
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En choisissant une contrainte de cisaillement admissible τadm de 50 MPa, calculer le
diamètre – supposé uniforme – d’un arbre de turbine à gaz transmettant une
puissance de 25 MW à 8000 t/min

Problème 5.1
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En choisissant une contrainte de cisaillement admissible τadm de 50 MPa, calculer le
diamètre – supposé uniforme – d’un arbre de turbine à gaz transmettant une
puissance de 25 MW à 8000 t/min

Problème 5.1
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Afin de déterminer l’état de contrainte en torsion circulaire, considérons un élément
infinitésimal autour d’un point M0, situé à une distance r de l’axe Gx.

Les contraintes normales sont nulles sur toutes les faces (σx = σy = σz = 0) et la
contrainte tangentielle est nulle sur les faces perpendiculaires à l’axe radial M0r

Dès lors qu’une des contraintes principales est nulle, l’état de contrainte est
bidimensionnel

Analyse de l’état de contrainte en torsion circulaire
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Choisissons à nouveau une section oblique Fϕ, perpendiculaire au plan principal
M0xt et tournant autour de l’axe M0r, sa normale n formant un angle ϕ avec l’axe M0x

L’équilibre des forces selon la normale n et la direction perpendiculaire entraîne

• 𝐹𝐹𝜑𝜑 𝜎𝜎𝜑𝜑− 𝐹𝐹𝑥𝑥𝜏𝜏 sin𝜑𝜑 − 𝐹𝐹𝑡𝑡𝜏𝜏 cos𝜑𝜑 = 0

• 𝐹𝐹𝜑𝜑 𝜏𝜏𝜑𝜑− 𝐹𝐹𝑥𝑥𝜏𝜏 cos𝜑𝜑 + 𝐹𝐹𝑡𝑡𝜏𝜏 sin𝜑𝜑 = 0

Analyse de l’état de contrainte en torsion circulaire

Ft

Fx

Fϕ

ϕ
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En vertu de la définition des faces Fx = Fϕ cos ϕ et Ft = Fϕ sin ϕ, les relations
précédentes deviennent (le déphasage ϕ0 valant π/4)

• 𝜎𝜎𝜑𝜑 = 2𝜏𝜏 sin𝜑𝜑 cos𝜑𝜑 = 𝜏𝜏 sin 2𝜑𝜑 = 𝜏𝜏 cos 2 𝜑𝜑 − 𝜑𝜑0

• 𝜏𝜏𝜑𝜑 = 𝜏𝜏 cos2𝜑𝜑 − sin2𝜑𝜑 = 𝜏𝜏 cos 2𝜑𝜑 = −𝜏𝜏 sin 2 𝜑𝜑 − 𝜑𝜑0

Analyse de l’état de contrainte en torsion circulaire

Cercle de Mohr fondamental 
Γxt en torsion circulaire
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Torsion circulaire : (a) cercles de Mohr; (b) axes et plans principaux

Analyse de l’état de contrainte en torsion circulaire
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Ligne isostatique

A ce stade, il est intéressant d’observer les trajectoires des contraintes principales,
c’est-à-dire les courbes de l’espace continuellement tangentes aux contraintes
principales. Ces courbes, appelées lignes isostatiques, sont des hélices à 45˚ en
torsion circulaire

https://drive.google.com/file/d/1evfRiQ3lDvmEgB5AYxoLUS2vehJ3syvS/view?usp=sharing
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Module élastique du fémur : 10-20 Gpa (σmax =50-100 MPa)
Moment de force : 1000 Nm ≡ 100 kg à 1 m
Résistance de l’os : 100 N/mm2 ou 100 MPa
Rayon : R = 20 mm et r = 10 mm

• 𝜏𝜏 𝑟𝑟 = 𝑟𝑟 𝑀𝑀𝑡𝑡
𝐼𝐼𝑝𝑝

= 2 𝑟𝑟 𝑀𝑀𝑡𝑡
𝜋𝜋 𝑅𝑅4−𝑟𝑟4

≅ 42.4 MPa

• 𝜏𝜏 𝑅𝑅 = 𝑅𝑅 𝑀𝑀𝑡𝑡
𝐼𝐼𝑝𝑝

= 2 𝑅𝑅 𝑀𝑀𝑡𝑡
𝜋𝜋 𝑅𝑅4−𝑟𝑟4

≅ 84.8 MPa

Simulation
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L’état de contrainte étant bidimensionnel, la variation relative de volume au premier
ordre peut être obtenue grâce à la formule dans laquelle σx et σy sont les contraintes
principales non nulles σ1 = +τ et σ3 = –τ

• 𝑣𝑣 = 𝜎𝜎1+ 𝜎𝜎3
𝐸𝐸

1 − 2𝜇𝜇 = 𝜏𝜏−𝜏𝜏
𝐸𝐸

1 − 2𝜇𝜇 = 0

Variation de volume
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La densité d’énergie u de déformation spécifique d’un barreau soumis au
cisaillement pour la torsion a pour valeur (voir énergie de cisaillement ch. 4)

• 𝑢𝑢 = 𝜏𝜏2

2 𝐺𝐺
= 𝜏𝜏

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

2 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
2

2 𝐺𝐺
= 𝑟𝑟

𝑅𝑅

2
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

L’énergie de déformation dU comprise entre deux sections distantes de dx est égale
au demi-produit du moment de torsion Mt par la rotation dϕ d’une des sections par
rapport à l’autre

• 𝑑𝑑𝑈𝑈 = 1
2
𝑀𝑀𝑡𝑡 𝑑𝑑𝜑𝜑 = 𝑀𝑀𝑡𝑡

2

2𝐺𝐺 𝐼𝐼𝑝𝑝
𝑑𝑑𝑥𝑥

• 𝑈𝑈 = ∫0
𝑑𝑑𝑈𝑈 = ∫0

 𝑀𝑀𝑡𝑡
2

2𝐺𝐺 𝐼𝐼𝑝𝑝
𝑑𝑑𝑥𝑥 = 𝑀𝑀𝑡𝑡

2


2𝐺𝐺 𝐼𝐼𝑝𝑝

Densité d’énergie

𝑑𝑑𝜑𝜑 =
𝑀𝑀𝑡𝑡 dx
𝐺𝐺 𝐼𝐼𝑝𝑝

𝜏𝜏 = 𝑘𝑘 𝑟𝑟 =
𝑟𝑟 𝑀𝑀𝑡𝑡

𝐼𝐼𝑝𝑝

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜏𝜏 𝑅𝑅 =
𝑅𝑅 𝑀𝑀𝑡𝑡

𝐼𝐼𝑝𝑝

(    )
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Calculer la contrainte de cisaillement maximum dans un ressort hélicoïdal de dia-
mètre D, formé de n spires de diamètre d et soumis à une charge de compression P.
Déterminer ensuite la flèche, la constante du ressort et l’énergie emmagasinée.

Problème 5.2
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Calculer la contrainte de cisaillement maximum dans un ressort hélicoïdal de dia-
mètre D, formé de n spires de diamètre d et soumis à une charge de compression P.
Déterminer ensuite la flèche, la constante du ressort et l’énergie emmagasinée.

Problème 5.2
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Problème 5.2
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Problème 5.2
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Problème 5.2
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Problème 5.2



Exemple 

 



Exemple 



Annexe III Moment d’une aire plane

Les moments du second ordre d’une aire plane F du plan Oxy, constitués du
moment d’inertie polaire par rapport à l’origine O, des moments d’inertie par rapport
aux axes Ox et Oy, ainsi que du moment centrifuge, sont définis par les expressions
respectives

• 𝐼𝐼𝑝𝑝 = ∬𝐹𝐹 𝑟𝑟
2𝑑𝑑𝑑𝑑 [m4]

• 𝐼𝐼𝑥𝑥 = ∬𝐹𝐹 𝑦𝑦
2𝑑𝑑𝑑𝑑 [m4]

• 𝐼𝐼𝑦𝑦 = ∬𝐹𝐹 𝑥𝑥
2𝑑𝑑𝑑𝑑 [m4]

• 𝐼𝐼𝑥𝑥𝑥𝑥 = ∬𝐹𝐹 𝑥𝑥𝑥𝑥 𝑑𝑑𝑑𝑑 [m4]

où r dénote le module du vecteur-lieu r

Il est à relever qu’en vertu de la liaison géométrique r2 = x2 + y2, le moment d’inertie
polaire Ip est lié aux moments d’inertie Ix et Iy par la relation : Ip = Ix + Iy

Moment du second ordre
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Le calcul par intégration du moment du second ordre d’un rectangle par rapport à
l’axe x passant par le centre de gravité

• 𝐼𝐼𝑥𝑥 = ∬𝐹𝐹 𝑦𝑦
2𝑑𝑑𝑑𝑑 = ∫𝑥𝑥=−𝐵𝐵/2

𝐵𝐵/2 ∫𝑦𝑦=−𝐻𝐻/2
𝐻𝐻/2 𝑦𝑦2𝑑𝑑𝑑𝑑

= 𝑥𝑥|−𝐵𝐵/2
𝐵𝐵/2 1

3
𝑦𝑦3|−𝐻𝐻/2

𝐻𝐻/2 = 𝐵𝐵𝐻𝐻3

12

• 𝐼𝐼𝑥𝑥′ = ∬𝐹𝐹 𝑦𝑦
2𝑑𝑑𝑑𝑑 = ∫𝑥𝑥=−𝐵𝐵/2

𝐵𝐵/2 ∫𝑦𝑦=0
𝐻𝐻 𝑦𝑦2𝑑𝑑𝑑𝑑 = 𝐵𝐵𝐻𝐻3

3

Approche discrète

• 𝐼𝐼𝑥𝑥′ = 𝐼𝐼𝑥𝑥 + ∑𝑦𝑦2 𝐹𝐹 = 𝐵𝐵𝐻𝐻3

12
+ 𝐻𝐻2

4
𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐻𝐻3

3

𝐼𝐼𝑥𝑥

Moment du second ordre : surface rectangulaire

x’
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Moment du second ordre

Forme de l’aire I p I x I y I xy

m4 m4 m4 m4

(a) Carré de côté D 0

(b) Rectangle de largeur B  et hauteur H 0

(c) Triangle isocèle de base B  et hauteur H 0

(d) Losange de diamètres B  et H 0

(e) Cercle de diamètre D 0

(f) Ellipse d’axes B  et H 0

𝐵𝐵𝐵𝐵
12 𝐵𝐵2 + ℎ2

𝐵𝐵𝐵𝐵
144 3𝐵𝐵2 + 4ℎ2

𝐵𝐵𝐵𝐵
48 𝐵𝐵2 + ℎ2

𝜋𝐵𝐵𝐵𝐵
64 𝐵𝐵2 + ℎ2
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En considérant la translation

• 𝐫𝐫′ = 𝐫𝐫 + 𝛅𝛅
• 𝑥𝑥′ = 𝑥𝑥 + 𝑎𝑎
• 𝑦𝑦′ = 𝑦𝑦 + 𝑏𝑏

• 𝐼𝐼𝑝𝑝′ = ∬𝐹𝐹 𝑟𝑟′
2𝑑𝑑𝑑𝑑 = ∬𝐹𝐹 𝑥𝑥 + 𝑎𝑎 2 + 𝑦𝑦 + 𝑏𝑏 2 𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑝𝑝 + 2 𝑎𝑎𝑆𝑆𝑥𝑥 + 𝑏𝑏𝑆𝑆𝑦𝑦 + 𝛿𝛿2𝐹𝐹

Dans le cas particulier où le point O coïncide avec le centre de gravité G

• 𝐼𝐼𝑝𝑝′ = 𝐼𝐼𝑝𝑝 + 𝛿𝛿2𝐹𝐹

• 𝐼𝐼𝑥𝑥′ = 𝐼𝐼𝑥𝑥 + 𝑏𝑏2𝐹𝐹

• 𝐼𝐼𝑦𝑦′ = 𝐼𝐼𝑦𝑦 + 𝑎𝑎2𝐹𝐹

Effet de translation des axes de coordonnées

Par rapport au référentiel O'x'y', les
moments du second ordre ont pour
expression
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Forme intégrale du moment statique et du moment d’inertie

• 𝑆𝑆𝑥𝑥′ = ∫𝑥𝑥′=−𝐵𝐵/2
𝐵𝐵/2 ∫𝑦𝑦=0

𝐻𝐻 𝑦𝑦 𝑑𝑑𝐹𝐹 − 2∫ ⁄𝑏𝑏 2
⁄𝐵𝐵 2 ∫( ⁄𝐻𝐻−ℎ) 2

⁄(𝐻𝐻−ℎ) 2+ℎ 𝑦𝑦 𝑑𝑑𝑑𝑑

= 𝐵𝐵 𝐻𝐻2

2
− 𝐻𝐻𝐻 𝐵𝐵−𝑏𝑏

2
[m3]

• 𝐼𝐼𝑥𝑥 = ∫𝑥𝑥=−𝐵𝐵/2
𝐵𝐵/2 ∫𝑦𝑦= ⁄−𝐻𝐻 2

⁄𝐻𝐻 2 𝑦𝑦2 𝑑𝑑𝑑𝑑 − 2∫ ⁄𝑏𝑏 2
⁄𝐵𝐵 2 ∫ ⁄−ℎ 2

⁄ℎ 2 𝑦𝑦2 𝑑𝑑𝑑𝑑

= 𝐵𝐵 𝐻𝐻3

12
− ℎ3 𝐵𝐵−𝑏𝑏

12
[m4]

• 𝐼𝐼𝑥𝑥′ = 𝐼𝐼𝑥𝑥 + ∑𝑦𝑦2 𝐹𝐹 [m4]

• 𝐼𝐼𝑝𝑝 = 𝐼𝐼𝑥𝑥 + 𝐼𝐼𝑦𝑦 [m4]

Moment du second ordre : poutre en I

H h

B

b
x

y

G

x'



Annexe III Moment d’une aire plane

Calcul discret des moments statique et d’inertie (sommation des aires)

• 𝑆𝑆𝑥𝑥′ = ∑𝑦𝑦 𝐹𝐹 = 𝐻𝐻
2
𝐵𝐵𝐵𝐵 − 𝐻𝐻

2
ℎ 𝐵𝐵 − 𝑏𝑏

= 𝐵𝐵 𝐻𝐻2

2
− 𝐻𝐻𝐻 𝐵𝐵−𝑏𝑏

2
[m3]

• 𝐼𝐼𝑥𝑥 = 𝐵𝐵𝐻𝐻3

12
− 𝐵𝐵−𝑏𝑏 ℎ3

12

• 𝐼𝐼𝑥𝑥′ = 𝐼𝐼𝑥𝑥 + ∑𝑦𝑦2 𝐹𝐹 [m4]

• 𝐼𝐼𝑦𝑦 = 𝐵𝐵3𝐻𝐻
12

− ℎ 𝐵𝐵3−𝑏𝑏3

12

• 𝐼𝐼𝑝𝑝 = 𝐼𝐼𝑥𝑥 + 𝐼𝐼𝑦𝑦 [m4]

Moment du second ordre : poutre en I

H h

B

b
x

y

G

x'
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